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a,a-Disubstituted a-amino acids are often found in nature, 
either in the free form or as constituents of biologically active 
peptides.' In recent years, this class of amino acids has attracted 
substantial synthetic interest2 because of its importance as enzyme 
inhibitors3 and as conformational modifiers in physiologically 
important peptides.4 Among these amino acids, their /3-hydroxy 
congeners1'5 can be viewed as the analogous amino acids of 
threonine or serine, which should have marked effects on peptide 
conformation as well as biological activity.6 Most synthetic routes 
to these important amino acids are based on the alkylation of 
enolates from bis-lactims,2b-7 oxazinones,2b'8 imidazolidinones,2b>9 

and other procedures.2b'10 We wish to describe here a new method 
for the synthesis of each optically active a-substituted threonine 
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(la-Id) and serine (8a, 8b), which are characterized by their 
enantiomeric convergence (Figure 1). 

Our synthetic plan was an intramolecular version of an 
asymmetric Strecker synthesis.'' Initially formed internal Schiff 
base (ketimine 3) from an amino ester 2 would undergo 
stereoselective amino nitrile formation to give 4; subsequent 
hydrolysis and removal of the chirality transferring group would 
yield optically active /J-hydroxy a-methyl a-amino acids 1 (eq 1). 
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Condensation of rf/-acetoin with iV-tert-butoxycarbonyl(Boc)-
L-phenylalanine 2-pyridyl thiol ester12 gave a diastereomeric 
mixture of /V-Boc-phenylalanine acetoin esters. After removal 
of the Boc group with trifluoroacetic acid (TFA), treatment of 
the resulting TFA salt 2a with 2 equiv of NaCN in 2-propanol 
gave a 4/1 mixture of cyclic amino nitriles, 4a and 4b.13 The 
major isomer 4a was not separable from the mixture by column 
chromatography on SiO2 but was isolated by treatment of the 
mixture with 2,2-dimethoxypropane in the presence of 0.4 equiv 
of ^/-camphorsulfonic acid (CSA). Only 4b afforded its cor­
responding acetonide 5, and 4a (mp 107.5-108.5 0C; [a]26

D-49.7° 
(c 0.31, CHCl3)) was recovered unchanged. The structure of 4a 
possessing the 55,65 configuration was confirmed by its spectral 
data in combination with X-ray crystallographic analysis.14 To 
our surprise, the mixture of 4a and 4b, upon prolonged exposure 
to an additional 1 equiv TFA in 2-propanol, was equilibrated to 
afford a 1/9 mixture of 4a and 4b. Recrystallization (ether/ 
hexane) gave pure 4b, mp 100-100.5 0C; [a]27

D +30.8° (c 1.0, 
CHCI3), whose structure was assigned to be (5S,6R)-4b by 
spectroscopic studies (1H NMR and NOE experiments) of the 
corresponding acetonide 5 (Scheme 1). 

The present reaction is characterized by the following points: 
(i) the reaction produced only two diastereomers, 4a and 4b, (ii) 
both isomers possessed the same 55 configuration, and (iii) the 
major product was the 65 isomer 4a, which was equilibrated to 
the 6R isomer 4b under acidic conditions.'3b These results suggest 
that the reaction involves both ketimine-type intermediates, 3a 
and 3b, coexisting at equilibrium via an enamine-type intermediate 
3c.15 This was proven by the fact that the reaction using 
2-propanol-</ as the solvent gave a 4/1 mixture of the mono-
deuterated products, 4a and 4b, in which the C6-H was completely 
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" (a) iV-Boc-L-phenylalanine 2-pyridyl thiol ester, toluene, room 
temperature, 5 days (84%). (b) TFA, CH2Cl2,0

 0C, 30 min. (c)2equiv 
of powdered NaCN, 2-propanol, room temperature, 2 h (96% from step 
b as a mixture of 4a and 4b). (d) 2,2-Dimethoxypropane, 0.4 equiv of 
CSA, acetone, room temperature, 3 h (5,19%, and recovered 4a, 63%). 
(e) Mixture of 4a and 4b obtained in step c, 1 equiv of TFA, 2-propanol, 
room temperature, 5 h, then recrystallization from Et20/hexane (80% 
from step b). 

exchanged with D atom.16 From these results, the rate-
determining step of the reaction would be an attack of cyanide 
ion to the ketimine intermediates, where a boatlike conformation 
with the benzyl group oriented to a pseudoaxial position seemed 
to be plausible (Scheme 1). The exclusive formation of 35 
products would be derived from an attack of cyanide ion to the 
sterically less hindered Si-face on CS of the ketimines. Therefore, 
the attack of cyanide ion to 3a might be kinetically more favored 
than the attack to 3b, yielding 4a as the major product.17 The 
6R isomer 4b would be thermodynamically more favored than 
4a because its structure possesses all equatorial substituents.18 

Thus, the amino nitrites 4a and 4b were obtained from c/Z-acetoin 
in a stereoselective manner, respectively. 

Removal of the phenylalanyl moiety from 4a and 4b and their 
conversion into the amino acids, Ic and Id, were carried out by 
the following sequence of reactions. Treatment of 4a with tert-
butyl hypochlorite and triethylamine gave a mixture of isomers 
6 [exo(enamine-type)/em/o(imine-type) = 2.4/l],19 which upon 
treatment with concentrated HCl, gave rise to the desired (2R.35)-
2-methylthreonine(lc): mp211-213 0C; [a]2i

D+13.0° (c0.95, 
H2O) (Scheme 2). Phenylpyruvic acid was isolated in quantitative 
yield as the byproduct. (2J?,3/?)-2-Methylallothreonine (Id) was 
obtained from 4b in the same manner as described above. The 
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at C6) and TMSCN/2-propanol-d (>20% D at C3 and ~90% D at C6). 
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" (a) 2 equiv of /-BuOCl, Et2O, O 0 C, 30 min, then room temperature, 
2 h, then triethylamine, room temperature, 8 h. (b) (1) Concentrated 
HCl, O 0 C, 4 h, room temperature, 24 h, then 80 0 C, 24 h; (2) Dowex 
5OW X 4 (elution with 1 N NH3), then recrystallized from H 2 0/EtOH/ 
Et2O: Ic, 84% from 4a; Id, 73% from 4b; la, 88% from the enantiomer 
of 4a; lb, 72% from the enantiomer of 4b. 

Scheme 3" 
Ph 

"(a) N-hoc 2b, TFA/CH2C12 (1/1), O 0C, 1.5 h. (b) 2 equiv of 
powdered NaCN, 2-propanol, room temperature, 2 h (97% from step a), 
(c) (1) 2 equiv of J-BuOCl, Et2O, O 0C, 30 min, room temperature, 2 h, 
then triethylamine, room temperature, 8 h; (2) concentrated HCl, O 
°C, 4 h, room temperature, 48 h, then 80 "C, 24 h; (3) Dowex 5OW X 
4 (elution with 1 N NH3), then recrystallized from H20/EtOH/Et20: 
8b, 84% from 7; 8a, 84% from the enantiomer of 7. 

spectroscopic data as well as physical constants of Id were in 
agreement with those reported: Id, mp 267-268 0C dec; [a]24o 
-13.0° (c 0.3, H2O).90 The use of D-phenylalanine afforded 
(2S,3J?)-la, mp 214-219 0C; Ia]20D -14.1° (c 1.08, H2O), and 
(25,3S)-Ib, mp 265-267 0C dec; [«]21

D-12.6° (c0.98, H2O),*= 
respectively, in the same manner as the D isomers, Ic and Id. 
Notice that the configuration of the new amino acids is opposite 
to that of phenylalanine.20 Thus, a-methylated threonine and its 
alio compounds (la-Id) were prepared in a few steps, and their 
overall yields were 44-50%. 

To extend this method for further applications, the synthesis 
of each enantiomer of 2-methylserine was next examined. The 
key transformation from L-phenylalanine acetol ester 2b, prepared 
by the condensation of acetol and N-Boc-L-phenylalanine 2-pyridyl 
thiol ester followed by TFA treatment, to amino nitrile 7 was 
achieved in quantitative yield with high stereoselectivity (~98% 
diastereomeric excess).13 Recrystallization (Et20/hexane) af­
forded pure 7: mp 114.5-115.0 0C; [a]*>D +22.5° (c 1.06, 
CHCl3). This was converted into 2-methyl-D-serine (8b), mp 
262-267 0C dec; [«]22

D -6.3° (c 1.05, H20),7b* in the same 
manner as described above (Scheme 3). The use of D-phenyl­
alanine gave 2-methyl-L-serine (8a), mp 261-265 0C dec; [a]22o 
+6.5° (c 1.01, H2O).7"-* The overall yield of this process was 
70%. 

In summary, asymmetric amino carboxylation to a-hydroxy 
ketones has been accomplished to give optically active /3-hydroxy 
a,a-disubstituted a-amino acids. 
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